Portland Harbor RI/FS - FS Process Outline

- 1) Develop RAOs (Section 4.2.1 of RI/FS Guidance)
 - a. Refine RAOs based on preliminary RAOs presented in Programmatic Work Plan
 - i. Metrics (e.g., reduce lifetime excess cancer risk to 10^{-6} or reduce tissue concentrations to achieve TRV)
 - b. Develop and refine PRGs
 - i. Baseline risk assessment
 - ii. Chemical specific ARARs
 - iii. Identify range of PRGs to carry forward into FS
- 2) Develop General Response Actions (Section 4.2.2 of RI/FS Guidance)
 - a. Dredging
 - b. Capping
 - c. MNR
- 3) Identify AOPCs (Section 4.2.3 of RI/FS Guidance)
 - i. Spatial distribution of contamination
 - ii. Exposure areas for various receptors
 - iii. Application of Geo-statistical tools (e.g., Thiessen polygons, risk contouring, other)
 - iv. Evaluation of subsurface contamination (e.g., erosion potential)
- 4) Initial Technology Screen Site-wide (Section 4.2.4 of RI/FS Guidance)
 - a. Technologies
 - i. Dredging (hydraulic, clamshell, environmental bucket
 - ii. Capping (amendments, armoring, thin layer, habitat enhancements)
 - iii. Containment (sheet pile, silt curtains, bubble curtains)
 - iv. Disposal (CDF, CAD, upland, offsite)
 - v. Treatment (dewatering, beneficial re-use of material)
 - vi. Monitored natural recovery (degradation, dilution)
 - vii. Institutional controls (fish advisories, navigation restrictions)
 - b. Evaluation
 - i. Effectiveness (chemicals, site specific factors)
 - ii. Cost (range for each)
 - iii. Implementability (equipment availability)
- 5) SMA Identification and Optimization (Section 4.2.5, 4.2.6 and 4.3 of RI/FS Guidance)
 - a. Factors:
 - i. Physical Parameters
 - 1. Sediment characteristics
 - 2. Potential for deposition and/or scour
 - 3. River depth
 - 4. Current velocities
 - 5. Proximity to navigation channel
 - 6. Level of activity (e.g., shipping activity)

- ii. Chemical Parameters
 - 1. Risk drivers
 - 2. Leachability
 - 3. Organic carbon content
 - 4. Bioavailability
 - 5. Presence of NAPL and/or dissolved phase contaminats
- iii. Site Factors:
 - 1. Release mechanism (e.g., overwater release, upland NAPL release, stormwater discharge, bank erosion)
 - 2. Geographic location (where does it make sense to group SMAs based on geographic proximity?)
 - 3. Current site use
 - 4. Potential for future dredging activities
 - 5. Habitat potential
 - 6. Navigation requirements
 - 7. Future site use and development potential
- b. SMA Identification
 - i. Identify area requiring active remediation through "hilltopping" or similar techniques
 - ii. Develop remedial action levels for each SMA focusing on key risk drivers
 - iii. Group according to geographic proximity and SMA specific characteristics
- c. SMA Optimization Screening Level evaluation based on SMA characteristics (Example Only)
 - i. Dredging emphasis:
 - 1. Identify SMAs where dredging is likely to be the primary remediation technology
 - 2. Estimate the areal and vertical extent of dredging based on application of site-wide technology screen and SMA specific factors
 - Evaluate the feasibility of various treatment options for dredged material based on application of site-wide technology screen and SMA specific factors
 - Evaluate the feasibility of various disposal options for dredged material based on application of site-wide technology screen and SMA specific factors
 - 5. Determine whether post dredging cap placement is required and nature of post dredging cap
 - 6. Identify areas outside dredge area subject to capping and MNR
 - 7. Evaluate effectiveness of capping and MNR based on consideration of factors identified below
 - 8. Evaluate effectiveness of overall SMA remedy at reducing risk through residual risk assessment including time-frame for reducing risk
 - 9. Evaluate need for institutional controls
 - ii. Capping emphasis
 - 1. Identify SMAs where capping is likely to be the primary remediation technology

- 2. Determine the areal extent of capping based on application of sitewide technology screen and SMA specific factors
- 3. Determine whether dredging is required prior to cap placement based on application of technology screen and SMA specific factors
- 4. Identify key cap parameters (e.g., thickness, cap type, need for cap amendments) based on application of site-wide technology screen and SMA specific factors
- 5. Identify Areas outside cap area subject to MNR
- 6. Evaluate effectiveness of MNR based on consideration of factors identified below
- 7. Evaluate effectiveness of overall SMA remedy at reducing risk through residual risk assessment including time-frame for reducing risk
- 8. Evaluate need for institutional controls
- iii. MNR emphasis
 - 1. Identify SMAs where MNR is likely to be the primary remediation technology
 - 2. Determine whether source reduction through capping and/or dredging is required based on application of site-wide technology screen and SMA specific factors
 - 3. Identify time-frame and monitoring requirements for MNR based on application of technology screen and SMA specific factors
 - 4. Evaluate effectiveness of overall SMA remedy at reducing risk through residual risk assessment including time-frame for reducing risk
 - 5. Evaluate need for institutional controls
- 6) Detailed Evaluation of Remedial Action Alternatives on Site-Wide Basis (Section 6 of RI/FS Guidance):
 - a. Develop a suite of site-wide remedial action alternatives
 - i. Develop and present SMA "groupings"
 - ii. Identify areas subject to Dredging, Capping and MNR
 - iii. No-action alternative
 - b. Evaluate overall protection of human health
 - c. Evaluate compliance with ARARs
 - d. Evaluate Long-Term Effectiveness considering:
 - i. Effectiveness and schedule for source control efforts
 - ii. Recontamination potential analysis
 - iii. Effectiveness of monitored natural recovery to reduce contaminant concentrations over time
 - iv. Long-term reliability and stability of sediment caps
 - v. Time-frame to achieve protective levels
 - e. Reduction of toxicity, mobility and volume through treatment
 - i. Application of in-situ and/or ex-situ treatment technologies
 - f. Short-term effectiveness considering
 - i. The potential for releases during dredging and capping activities

- ii. The effectiveness of containment technologies such as silt curtains and sheet piling
- iii. Duration of remedial activities
- iv. Time until protection is achieved
- g. Implementability
 - i. Flood rise
 - ii. Availability and capacity of disposal sites
 - iii. Compatibility with existing and likely future land use including site redevelopment, river use, habitat areas and potential restoration sites
 - iv. Prioritization and sequencing
 - v. Performance measures and monitoring
- h. Cost
 - i. Capital costs
 - ii. Operation and maintenance costs
 - iii. Mitigation